[CakeML-Dev] CF to translator
Ramana Kumar
Ramana.Kumar at cl.cam.ac.uk
Fri Oct 7 05:10:36 UTC 2016
I have proved the following connection between CF's app_basic (as on
master) and a revised formulation of the translator's Arrow, modulo 4
cheats. In this email, I will show: the final theorem proved, the cheated
lemmas, and the new Arrow definition. I ask for the following feedback:
1. Does the final theorem look like a strong enough connection?
2. Do any of the cheated lemmas look false?
3. Does the Arrow definition look reasonable?.
If there aren't any problems, then I can work towards upgrading the
translator to use this definition, and proving the cheats.
Final theorem:
|- Arrow a b f v ⇔ ∀x v1. a x v1 ⇒ app_basic p v v1 emp (cond ∘ b (f x))
Cheated lemmas:
(N.B. I want someone else to prove 2. I can tackle the rest.)
1. evaluate ck env s exp (s',r) ⇒ LENGTH s.refs ≤ LENGTH s'.refs
2. evaluate F env st exp (st',Rval res) ∧
SPLIT (st2heap p st') (g,st2heap p st) ⇒
st'.ffi = st.ffi
3. evaluate F env (empty_state with refs := s.refs) exp
(empty_state with refs := s.refs ++ refs',Rval x) ⇒
evaluate F env s exp (s with refs := s.refs ++ refs',Rval x)
(s is 'ffi state, whereas empty_state is unit state)
4. evaluate F env s es (s',Rval r) ∧ s.refs ≼ s'.refs ∧ s'.ffi = s.ffi ∧
t = empty_state with refs := s.refs ∧
t' = empty_state with refs := s'.refs ⇒
evaluate F env t es (t',Rval r)
Arrow definition:
Arrow a b = (λf v. ∀x. AppReturns (a x) v (b (f x)))
AppReturns P cl Q ⇔
∀v.
P v ⇒
∀refs.
∃env exp refs' u.
do_opapp [cl; v] = SOME (env,exp) ∧
evaluate F env (empty_state with refs := refs) exp
(empty_state with refs := refs ++ refs',Rval u) ∧ Q u
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.cakeml.org/pipermail/developers/attachments/20161007/07fddae1/attachment.html>
More information about the Developers
mailing list