
Automatically Introducing Tail Recursion in
CakeML (Extended Abstract)

Oskar Abrahamsson

Chalmers University of Technology, Gothenburg, Sweden
aboskar@chalmers.se

Abstract. In this paper, we implement an optimizing compiler transfor-
mation which turns non–tail-recursive functions into tail-recursive func-
tions in an intermediate language of the CakeML compiler. The imple-
mentation is integrated with the existing structure of the compiler as a
standalone compiler stage, and is verified to preserve the observational
semantics of any transformed program. Moreover, our efforts uncover
surprising drawbacks in some of the verification techniques currently
employed in several parts of the CakeML compiler. We analyze these
drawbacks and discuss potential remedies.

Paper Category: Project.

1 Introduction

Consider the following definition of a function length in an ML-like language:

fun length [] = 0

| length (x::xs) = length xs + 1

Regardless of what we choose as its name, the purpose of length should be
immediately clear even to a novice functional programmer – it computes the
length of a list. However, this aesthetically pleasing style of programming comes
at a price: length is not tail recursive. Since tail-recursive functions will in
general compile to more space efficient and faster code, we give an equivalent
tail-recursive definition of length:

fun length’ [] acc = acc

| length’ (x::xs) acc = length’ xs (1 + acc)

fun length xs = length’ xs 0

Functions written using tail calls enable compilers to perform a powerful op-
timization called tail call elimination. In short, tail call elimination entails the
procedure of transforming tail-recursive functions into something which resem-
bles a while loop. Since such a function has a recursive call to itself directly in
tail position (i.e. the ‘last’ position visited when evaluating an expression), no



additional bookkeeping is required to store a return address for the recursive
call – once the base case is reached, length’ may simply return to the function
which originally called it. Moreover, when a function performs a tail-call to itself,
the locations in memory or registers in which the function arguments are stored
can be reused for subsequent recursive calls. The benefits of the procedure are
constant stack space usage as well as increased performance due to the reduced
amount of bookkeeping.

1.1 Contributions

In this paper, we describe a verified implementation of a code transformation for
functional programs, which turns non-tail calls into tail calls by automatically
introducing accumulator arguments. Although the technique is well known, it is
mostly performed manually by the programmer at the source level. Our imple-
mentation of the transformation acts on an intermediate language in the fully
verified CakeML compiler.

Section 2 gives a brief introduction to the CakeML project, and the inter-
mediate language BVI on which our transformation acts. The details of the
transformation are introduced in Section 3 by means of a worked example in
an ML-like language. Moreover, a general description of the transformation is
outlined, and we sketch out the details of how the transformation has been im-
plemented for BVI.

Our contributions consist of extending the CakeML compiler with a self-
contained phase performing the transformation, as well as a machine-checked
proof of semantic preservation. Section 4 gives an overview of the techniques
used to verify the transformation on BVI. The style of verification employed in
the functional intermediate languages of the CakeML compiler has so far proven
successful. In particular, it has enabled the verification of several intricate op-
timizations that manages to put CakeML in league with OCaml and Poly/ML
in certain benchmarks [6]. However, the verification of the transformation pre-
sented in this paper reveals some surprising shortcomings to this approach. These
shortcomings are discussed in Section 4.2.

Finally, Section 5 puts our work in context with other work done on equivalent
or similar transformations. Formal treatments of the transformation described in
this paper are sparsely accounted for in literature. In particular, most systematic
descriptions focus solely on the removal of list-append, with the introduction of
tail-recursion as an implicit side-effect. Additionally, to the best of our knowl-
edge, ours is the first proven-correct implementation, existing in a fully verified
compiler.

2 CakeML

CakeML [4] is a strongly typed functional programming language with call-by-
value semantics, based on Standard ML. It supports a large subset of the features
present in Standard ML, including references, exceptions, modules and I/O.



The CakeML compiler targets several common hardware architectures, including
Intel x86, ARM and MIPS. The compiler is implemented in higher-order logic
using the HOL4 proof assistant, and comes with a mechanically verified proof
of correctness which guarantees that every valid CakeML source program is
compiled into semantically compatible machine code.

CakeML recently received a new backend [7] which makes use of 12 inter-
mediate languages (ILs) during compilation. The IL under consideration for our
implementation is BVI (Bytecode-Value Intermediate language). BVI is a low-
level first-order functional language. Like all other ILs in the new CakeML com-
piler backend, its formal semantics is specified in terms of a functional big-step
style [5]. An overview of the semantics of BVI is given in Section 4.

3 Transforming Recursive Functions in BVI

In this section, we describe a code transformation for automatically introducing
tail recursion in the BVI IL. We start by providing an informal description of
the procedure through a worked example in Section 3.1. The example is followed
by a more general description of the steps of the transformation in Section 3.2.
Finally, in Section 3.3 we sketch out the details of an implementation of the
transformation for BVI.

3.1 Example

Consider the following naive implementation of a function which reverses a list:

fun reverse [] = [] (* reverse.base *)

| reverse (x::xs) = reverse xs ++ [x] (* reverse.rec *)

The tail position in the recursive case of reverse contains a list append operation
reverse xs ++ [x]. We will introduce a function reverse’ such that for all xs
and for all a, it holds that reverse’ xs a = reverse xs ++ a. We proceed by
specifying the recursive case:

fun reverse’ (x::xs) a = reverse (x::xs) ++ a

Next, we substitute the definition of reverse.rec for the call on the right-hand
side:

fun reverse’ (x::xs) a = (reverse xs ++ [x]) ++ a

We then utilize the associative property of (++), yielding

fun reverse’ (x::xs) a = reverse xs ++ ([x] ++ a)

Since the property reverse’ xs a = reverse xs ++ a holds for all choices of
a, we substitute reverse’ xs [] for reverse xs by an inductive argument.



fun reverse’ (x::xs) a = reverse’ xs [] ++ ([x] ++ a)

We re-use the inductive argument a second time, this time with [x] ++ a for a.

fun reverse’ (x::xs) a = reverse’ xs (([x] ++ a) ++ [])

The same procedure is applied for the base case of reverse. Finally, we give
the definition some touch-ups utilizing the definition of (++), and introduce an
auxiliary function named so that reverse’ may be used in place of the original
reverse:

fun reverse’ [] a = a

| reverse’ (x::xs) a = reverse’ xs (x::a)

fun reverse xs = reverse’ xs []

3.2 Tail Recursion Using Accumulators

The transformation steps applied in Section 3.1 can be generalized to work with
any operation in tail position, so long as it is associative and has an identity
element. Let ⊕ be an associative operator with identity 0, and let f be some
recursive function. The key takeaway from the reverse example is that whenever
f has an operation

f x⊕ a (1)

in tail position, we can replace this operation by a tail call, by introducing a
function f ′ satisfying

f ′ x a = f x⊕ a . (2)

The additional argument a to f ′ is commonly referred to as an accumulator, since
it accumulates the partial sum of the result computed during the recursion. The
production of such a function f ′ can be performed as follows, by rewriting the
existing expression constituting the body of f :

1. For those expressions e in tail position that satisfy the form e := fx⊕ y for
some x, y, replace e by f ′ x (y ⊕ a), where f ′ is an unused function name.

2. For all other expressions e in tail position, replace them with the expression
e′ := e⊕ a.

3. Finally, rename f to f ′, and give it an additional argument pointed to by a.
The name f is re-used for an auxiliary definition applying f ′ to the identity
of ⊕ by setting f x = f ′ x 0.



3.3 Tail Recursion in BVI

Our transformation is to be applied on BVI programs as a standalone stage in
the CakeML compiler. At this stage of compilation, the input program has been
divided into a list of functions stored in an immutable code store, which we
call the code table. A code table entry is given by a tuple (nm,ar ,exp), where
(nm : num) is a unique address used for indexing into the table (i.e. the function
‘name’), (ar : num) defines the arity of the function, and exp the expression
which constitutes its body. Our reasons for choosing BVI for this optimization
are the following:

– BVI does not support closures. Determining equivalence between values in a
language with closures is complicated, since values contain expressions that
would be changed by our transformation. Implementing the transformation
in a first-order language greatly simplifies verification, as it enables us to use
equality as equivalence between values before and after the transformation.

– The compiler stage which transforms a prior higher-level IL into BVI intro-
duces new functions into the compiler code table, and keeps track of what
function names are unused. This suits our purposes, since our transformation
needs to introduce auxiliary definitions, i.e. using previously unused function
names.

We will now give an outline of how the transformation from Section 3.2 is
implemented in the BVI stage of the CakeML compiler. The transformation is
restricted to expressions containing associative integer arithmetic and list append
in tail position, for the reason that these can be easily detected at compile-time.

1. We search the code table for entries (nm,ar ,exp), in which exp contains at
least one tail position in the shape of f x ⊕ y, where f is the name of the
function at address nm.

2. If the previous check succeeds, we create an expression expOPT by modifying
the tail positions of exp:

– Any expression f x⊕ y is replaced by a function call f ′ x (y⊕ a), where
f ′ is a function at the next ‘free’ address nm′ in the code table, and a is
a variable pointing at a newly allocated argument of the function.

– Any other expression y in tail position is replaced by y ⊕ a.

3. Finally, the transformed expression expOPT is inserted into the code table
as (nm′, ar + 1, expOPT), and an auxiliary expression expAUX is inserted
as (nm, ar, expAUX). This expression simply calls f ′ while appending the
identity of ⊕ to the arguments it was called with.

Lastly, we impose some additional restrictions on which expressions that can
be transformed. BVI supports a wide range of operations that read or alter global
state. In order for effects to not be evaluated out of order, we require that y in
the expression f x⊕ y does not access global state in any way.



4 Verification of Semantic Preservation

Like most intermediate languages in the CakeML compiler, the semantics of
BVI is defined in a functional big-step style using an interpreter function [5].
This enables us to prove theorems regarding program semantics by induction
on the recursive cases of the interpreter function. In general, these correctness
theorems state that the semantics of a list of expressions is preserved under
some transformation applied directly on these expressions. However, since our
transformation works on the entire BVI code table – as opposed to lists of
expressions – it does not fit well into any existing stages of in the BVI phase of
the compiler. We have thus implemented it as a stand-alone stage. In addition to
providing theorems which state that observational semantics are preserved when
transforming stand-alone expressions, this also requires us to provide a higher-
level semantics theorem, stating that the semantics of all expressions in the code
table are preserved under the transformation. In the remainder of this section,
we give some details of this theorem and sketch out the process of proving it.

4.1 Semantics Preservation

We state and prove the following semantics-preservation theorem for the compiler
stage which performs the transformation.

` every (free names n ◦ fst) prog ∧ all distinct (map fst prog) ∧
compile n prog = prog2 ∧
semantics ffi (fromAList prog) start 6= Fail⇒
semantics ffi (fromAList prog) start =
semantics ffi (fromAList prog2) start

Concretely, the semantics function describes the observable results of evaluating
the program prog from an entry point start (i.e. an address in the code table),
and an FFI state ffi . An incorrect program, that is, a program which fails to
type check, is represented by the result Fail. Our theorem thus states that the
semantics of any non-Fail program should be preserved under the transformation
compile, which applies the transformation to the functions in the code table.

4.2 Semantics Preservation, cont’d

The semantics theorem is proven by means of the following lemma which guar-
antees that the semantics of every list of non-failing BVI expressions is preserved
when the transformation is applied to the code table. The semantics function is
defined in terms of evaluate (see Figure 1), as described in Tan et al. [7].



evaluate ([],env ,s) = (Rval [],s)

evaluate (x ::y ::xs,env ,s) =
case evaluate ([x ],env ,s) of

(Rval v1,s1) ⇒
(case evaluate (y ::xs,env ,s1) of

(Rval vs,s2) ⇒ (Rval (hd v1::vs),s2)
| (Rerr v8,s2) ⇒ (Rerr v8,s2))

| (Rerr v8,s1) ⇒ (Rerr v8,s1)

· · ·
evaluate ([Op op xs],env ,s) =
case evaluate (xs,env ,s) of

(Rval vs,s ′) ⇒
(case do app op (reverse vs) s ′ of
Rval (v ,s ′) ⇒ (Rval [v ],s ′)
| Rerr e ⇒ (Rerr e,s ′))

| (Rerr v7,s ′) ⇒ (Rerr v7,s
′)

Fig. 1. The definition of the function evaluate, defining semantics of the BVI language.
The majority of cases have been left out for brevity, and are replaced with dots.

` evaluate (xs,env1,s) = (r ,t) ∧
env rel transformed acc env1 env2 ∧ code rel s.code c ∧
(transformed ⇒ length xs = 1) ∧
r 6= Rerr (Rabort Rtype error)⇒
evaluate (xs,env2,s with code := c) =
(r ,t with code := c) ∧

(transformed ⇒
∀ op n exp ar .
lookup nm s.code = Some (ar ,exp) ∧
is transformed code nm ar exp n c op ∧
tail is ok nm (hd xs) = Some op ⇒
evaluate
([transform tail n op nm acc (hd xs)],env2,
s with code := c) =
evaluate

([apply op op (hd xs) (Var acc)],
env2,s with code := c))

The first six lines of the lemma above are quite common for any verification of an
optimization in the CakeML compiler. These lines ensure that the expressions
xs are well-typed, and that the code table s.code of the state s is related to
some code table c under the relation code rel. This relation simply states that
for any entry in s.code there exist corresponding entries in c with correct arities.



Additionally, we require a relation env rel between the environments in which the
original and transformed expressions are evaluated, such that a location in the
latter contains a well-typed value that may be used by the accumulator variable
of a potentially transformed expression in xs.

What makes this theorem unusual is the implication transformed ⇒ . . .,
which declares the behavior of transformed expressions. In short, we ensure that
any such expressions that are present in the code table s.code are transformed in
the code table c. Moreover, we require that any expression that passes a static
check (see Section 3.3) will, when transformed, evaluate to a result that is equal
to the result of simply applying the expression to the accumulator variable under
the operation.

The lemma is proven by recursive induction on the semantics function evaluate
(see Figure 1). This evaluate function is defined on sequences of lists, and suc-
cessful evaluation of one such list results in Rval vs, where vs is a list of values. If
an error e is encountered as a result of evaluating some expression, other results
are discarded and the function returns Rerr e. In particular, ill-typed expressions
evaluate to the error Rabort Rtype error, and are excluded from all theorems by
proof at a prior stage.

Proof of our lemma requires semantics preservation to hold for all expressions
that we might evaluate; specifically, we must treat any expression in the shape
of f x⊕ y (cf. Section 3.3). This leads to a proof goal along the lines of

f x⊕ y ≡ f ′ x y (3)

where ≡ is taken to mean semantic equality under the evaluate function. The se-
mantics of BVI dictate that the operands xs to an operation expression Op op xs
are evaluated in sequence using evaluate (see Figure 1). This necessarily implies
that f x is evaluated ahead of y. However, on the right-hand side, y is an ar-
gument to f ′ and thus evaluated prior to the function call, due to call-by-value
semantics. Since y does not depend on global state (cf. Section 3.3), this should
not matter, as y is pure and will evaluate to some value. However, guaranteeing
that the compound expression f x⊕y is well-typed by assuming that evaluation
does not abort with a Rtype error does not guarantee that the same holds for y,
since the evaluation of f x can result in any other error. This peculiarity of the
verification procedure we use will expose itself whenever we attempt to change
the order of evaluation in compound expressions. It is currently circumvented
by imposing strong restrictions on y as to provide a static guarantee that it
evaluates to a value.

5 Related Work

Burstall and Darlington [1] described a framework for transforming recursive
functions into more efficient imperative counterparts. Their approach, however,
relies on user-guidance, and is thus not suitable for inclusion in a fully automatic
optimizing compiler.



An early systematic account of the transformation described in this paper was
given by Wadler [8], with the primary goal of eliminating quadratic list append
usage. Since the introduction of tail calls is our primary goal, we have extended
it to also treat associative integer arithmetic. A different transformation for
introducing accumulators is presented in Kühnemann, et al. [3]. It is, however,
limited to unary functions. We are unaware of any compiler which implements
this transformation.

Chitil [2] describes an improvement of the short-cut deforestation algorithm
which, among other improvements, enables deforestation to act on list producers
which consume their own result. It correctly handles the reverse example from
Section 3.1, but is limited to functions returning lists. As with Kühnemann et
al. [3], we are not aware of any compiler which implements it.

Finally, we note that in contrast to other work, our contribution is a fully
verified transformation with a machine-checked proof of semantic verification.
In addition, it is implemented in a proven-correct compiler, providing not only
increased confidence in its correctness, but shows the feasibility of implementing
the transformation in practice and integrating it into a larger context.

6 Conclusions

In this paper, we have implemented an optimizing compiler transformation act-
ing on expressions in the BVI intermediate language. The transformation in-
troduces tail recursion in certain recursive functions while ensuring semantic
preservation. The implementation has been integrated with the existing struc-
ture of the CakeML compiler as a standalone compiler stage. This compiler stage
has been verified to not alter the observational semantics of the program under
transformation.

To the best of our knowledge, this is the first fully verified implementation
of the transformation in any modern compiler. In addition, our contributions
make the CakeML compiler the first fully verified compiler which performs this
transformation.

Furthermore, our efforts uncover surprising drawbacks in some of the verifi-
cation techniques currently employed in the BVI compiler phase of the CakeML
compiler. The current solution to this issue is unnecessarily restrictive. An al-
ternative approach is to introduce a ‘filter’ prior to the compiler transformation
which recursively replaces all ill-typed expressions with well-typed constants.
However, such an approach would introduce new drawbacks, as the filter would
traverse parts of the program under compilation while essentially performing
no real work. In the future, we will investigate a viable long-term solution to
this issue. This would likely require us to come up with a different verification
approach for code transformations which alter the order of evaluation.

Acknowledgments. This work was carried out as the author’s M.Sc. project at
the CSE department of Chalmers University of Technology, Sweden, under the
supervision of Magnus Myreen.



State of Formal Proofs. At the time of writing, there are some minor holes in
the mechanized proofs. However, the proofs will be completed by the time of
TFP. The proofs are available at https://github.com/oskarabrahamsson/cakeml/
blob/bvi tailrec/compiler/backend/proofs/bvi tailrecProofScript.sml.

References

1. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. Journal of the ACM (JACM) 24(1), 44–67 (1977)

2. Chitil, O.: Type-inference based short cut deforestation (nearly) without inlining.
In: Symposium on Implementation and Application of Functional Languages. pp.
19–35. Springer (1999)

3. Kühnemann, A., Glück, R., Kakehi, K.: Relating accumulative and non-
accumulative functional programs. In: International Conference on Rewriting Tech-
niques and Applications. pp. 154–168. Springer (2001)

4. Kumar, R., Myreen, M., Norrish, M., Owens, S.: CakeML: a verified implementation
of ML. pp. 179–191. ACM (2014)

5. Owens, S., Myreen, M.O., Kumar, R., Tan, Y.K.: Functional big-step semantics.
In: European Symposium on Programming Languages and Systems. pp. 589–615.
Springer (2016)

6. Owens, S., Norrish, M., Kumar, R., Myreen, M.O., Tan, Y.K.: Verifying efficient
function calls in CakeML. In: ICFP ’17: Proceedings of the 22nd ACM SIGPLAN
International Conference on Functional Programming. ACM Press (Sep 2017), to
appear

7. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A., Owens, S., Norrish, M.: A new
verified compiler backend for CakeML (2016)

8. Wadler, P.: The concatenate vanishes. Note, University of Glasgow (1987)

https://github.com/oskarabrahamsson/cakeml/blob/bvi_tailrec/compiler/backend/proofs/bvi_tailrecProofScript.sml
https://github.com/oskarabrahamsson/cakeml/blob/bvi_tailrec/compiler/backend/proofs/bvi_tailrecProofScript.sml

	Automatically Introducing Tail Recursion in CakeML (Extended Abstract)

